@,

BiolVled Central

Review

Central and peripheral mechanisms of narcotic antitussives:
codeine-sensitive and -resistant coughs
Kazuo Takahama* and Tetsuya Shirasaki

Cough

Address: Department of Environmental and Molecular Health Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1
Oe-Honmachi, Kumamoto 862-0973, Japan

Email: Kazuo Takahama* - takahama@gpo.kumamoto-u.ac.jp; Tetsuya Shirasaki - shirasak@gpo.kumamoto-u.ac.jp
* Corresponding author

Received: 4 December 2005
Accepted: 9 July 2007

Published: 9 July 2007
Cough 2007, 3:8  doi:10.1186/1745-9974-3-8
This article is available from: http://www.coughjournal.com/content/3/1/8

© 2007 Takahama and Shirasaki; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Narcotic antitussives such as codeine reveal the antitussive effect primarily via the p-opioid
receptor in the central nervous system (CNS). The k-opioid receptor also seems to contribute
partly to the production of the antitussive effect of the drugs. There is controversy as to whether
d-receptors are involved in promoting an antitussive effect. Peripheral opioid receptors seem to
have certain limited roles. Although narcotic antitussives are the most potent antitussives at
present, certain types of coughs, such as chronic cough, are particularly difficult to suppress even
with codeine. In guinea pigs, coughs elicited by mechanical stimulation of the bifurcation of the
trachea were not able to be suppressed by codeine. In gupigs with sub-acute bronchitis caused by
SO, gas exposure, coughing is difficult to inhibit with centrally acting antitussives such as codeine.
Some studies suggest that neurokinins are involved in the development of codeine-resistant coughs.
However, evidence supporting this claim is still insufficient. It is very important to characterize
opiate-resistant coughs in experimental animals, and to determine which experimentally induced
coughs correspond to which types of cough in humans. In this review, we describe the mechanisms
of antitussive effects of narcotic antitussives, addressing codeine-sensitive and -resistant coughs,
and including our own results.

Introduction

Cough causes via the activation of cough reflex arc con-
sisted of the airway vagal afferent nerves, cough center in
the medulla and the efferent nerves. Inhibiting it at any
site of the arc can be expected to cause antitussive effect.
However, the mechanisms of cough generation, its mod-
ulation and antitussive effect of centrally and peripherally
acting antitussives are still largely unclear. Of the many
available narcotic and non-narcotic antitussives, the most
effective are the narcotic antitussives, which are of limited
use due to their inherent undesirable side effects, particu-
larly their narcotic side effects. Even for this codeine, it has
recently been pointed that it is not effective as estimated

from the experimental results in guinea pigs [1]. Also,
chronic coughs are often resistant to treatment with
codeine. Thus, there is a need for new types of antitussives
that can suppress chronic coughs. It is unclear why some
coughs, such as chronic cough, are resistant even to treat-
ment with potent antitussives such as codeine, although it
is known that coughing is a neural reflex. In this review,
we discuss the mechanisms of the effects of narcotic anti-
tussives on coughing using experimental animals, and fur-
ther, the resistance of coughs to narcotic antitussives,
describing our recent findings regarding codeine-sensitive
and -insensitive coughs in guinea pigs.
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Opioid receptor subtypes and antitussive effects
The antitussive mechanisms of narcotic antitussives are
not fully understood. The available evidence clearly indi-
cates that narcotic antitussives act on opioid receptors [2-
4]. Binding studies concerning guinea-pig and human
opioid receptors demonstrated that codeine and dihy-
drocodeine, gold standard narcotic antitussives, were
more selective to the p-opioid receptor than other k- or 3-
opioid receptors [3,5]. K; value of [3H|codeine (3.7 x 107
M) for replacement of [3H|-D-Ala?2, MePhe*, Gly-ol°]
enkephalin (DAMGO), a p-selective ligand, in guinea pigs
[3] was close to the K, value of 5.6 x 107 M for the satura-
ble binding of [3H]codeine in the lower brain stem of
guinea-pigs [6]. p-Selective morphine has much more
potent antitussive activity in cat [7]. k-Agonists also have
antitussive activity. Therefore, both p- and x-opioid recep-
tors have been considered as candidates for being the
receptors which contribute to antitussive activity.

Further, pharmacological studies carried out by using rats,
mice and p,-opioid receptor deficient mice suggested that
L,- rather than p,-subtype of the p-opioid receptor con-
tributes to the antitussive activity of opioids [8,9]. Unfor-
tunately, there is argument against these results in mice
and rats, because it has been unable to reliably obtain a
cough-like behavior in mice and rats. In addition, Ohi et
al. [10] recently found that the motor patterns of rats and
guinea pigs during cough-producing stimuli were signifi-
cantly different. In rats, two different types of behavior
were observed and one of them did not conform to the
classic definition of a cough. Codeine suppressed both
behaviors. For these reasons, it has been addressed that
rats and mice are not viable as models of cough.

This issue seems to cast its shadow over the conflicting
results about the role of §-opioid receptors in producing
the cough inhibiting effect of narcotic antitussives. Kamei
et al [11] demonstrated that [D-Pen25]enkephalin
(DPDPE), a selective 3-agonist, did not have an antitus-
sive effect, but rather inhibited the antitussive effects of
DAMGO and K-50488H, a selective k opioid receptor ago-
nist found in rats. But, 8-antagonists such as naltrindole
and naltriben reduced the number of capsaicin-induced
coughs in mice and rats [12,13]. Mu- and k-opioid recep-
tor antagonists did not antagonize the &-antagonist-
induced antitussive activities. Conversely, Kotzer et al. [5]
showed that the highly selective 3-agonist SB 227122
inhibited the cough-reflex induced by citric acid in
guinea-pigs. The antitussive effect of SB227122 was antag-
onized by the §-antagonist SB 244525. This 3-antagonist
itself did not have an antitussive effect. Kotzer et al. have
also reported that naltrindole binds to human p- and «-
opioid receptors at significant levels. Further studies are
required to confirm whether the controversy presented
above comes from differences in the species of experimen-
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tal animals used and/or differences in the pharmacologi-
cal properties of each 3 receptor agonist and antagonist
used.

Apart from the above, we have recently found evidence for
another possible mechanism of the antitussive effects of 3-
antagonists. In a patch clamp study using single brain
neurons, naltrindole and naltriben both inhibited the cur-
rents caused by activation of G-protein-coupled inwardly
rectifying K* (GIRK) channel [14]. GIRK channels couple
to the 5-HT, , receptor, and contribute to a negative feed-
back mechanism of 5-HT release. Dextromethorphan,
which is a representative non-narcotic antitussive and has
an inhibitory effect on GIRK channel activated currents
[15], antagonized the 5-HT-induced hyperpolarization
and depolarized the membrane potential, generating
action potentials in dorsal raphe neurons. Thus, inhibi-
tion of this channel may increase the 5-HT level in the
CNS. In human volunteers, infusion of 5-HT or its precur-
sor reduced cough responses to a chloride-deficient solu-
tion [16]. In contrast, reduction of 5-HT levels has been
found to inhibit the antitussive effects of narcotic and
non-narcotic antitussives [17]. Stimulation of raphe
nuclei depresses discharges in inspiratory motoneurons
[18,19]. The 5-HT,, receptor agonist inhibited cough
responses, although it stimulated cough response at high
doses [20]. 5-HT,/5-HT, receptor antagonists inhibited
any morphine-induced antitussive effect in humans [21].
In addition, DMGO increased 5-HT efflux in dorsal raphe
nucleus [22]. Taken together, the above findings suggest
that antitussive effects of 8-antagonists are at least partly
due to the inhibition of GIRK channel currents [23].

Next, we will discuss the site of antitussive action of opio-
ids in the CNS. Results of in vivo experiments suggest that
centrally acting antitussives primarily act on the brain-
stem cough center. Recently, Gestreau et al. [24] reported
that fictive cough selectively increased Fos-like immuno-
reactivity (FLI) in the interstitial and ventrolateral subdi-
vision of the nucleus tractus solitarius (NTS), the reticular
formation (the medial part of the lateral tegmental field,
and the internal division of the lateral reticular nucleus),
the ambigual complex (the nucleus retroambiguus, the
para-ambigual region, and the retrofacial nucleus), and
the medial parabrachial nucleus in cat. In all the nuclei,
codeine significantly reduced the increase in FLI. Further,
laryngeal afferent stimulation enhanced FLI in periaque-
ductal gray matter (PAG) and dorsal raphe nucleus in cat
[25].

p-Opioid receptors are expressed intensely or moderately
in the ambiguus nucleus, NTS, dorsal vagal nerve nucleus,
medial parabrachial nucleus, PAG and raphe nuclei [26-
29]. In these regions, k-opioid receptors are also expressed
with similar or less potent density. 8-Opioid receptors are
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generally less abundant in the brainstem, but the pneu-
motaxic center, including the nucleus parabrachialis, con-
tains a very high density of 6-binding site. In the NTS and
ambiguus nucleus, it is expressed weakly. Here, caudal
NTS and its neighboring ventromedial region has been
considered as a strong candidate for being the cough
center, because this region primarily receives sensory
input from the lower airway [30,31] and its stimulation
causes cough-like response [32,33]. The NTS is more
heavily labeled by the p-ligand than by the k-ligand in
guinea pigs and cats [29,34]. Further, the p, sites have
been found to be associated with respiratory depressant
effects of opioids, whereas the y, sites have been found to
be associated with the analgesic effects of opioids in
mouse brain [35]. Microinjection of codeine into the NTS
inhibited a fictive cough reflex in guinea pigs [36]. p-Opi-
oid receptor agonist presynaptically inhibited excitatory
postsynaptic currents in the NTS [37]. Kappa- and d-opi-
oid receptor agonists also inhibited excitatory postsynap-
tic potentials in the NTS but they are less effective than -
opioid receptor agonist [38].

Given these together with the reported affinity of narcotic
antitussives for opioid receptors, narcotic antitussives
might have a primary site of antitussive effect on p-opioid
receptors in the NTS, although there is a report that the
antitussive effects of codeine are not blocked by naloxone
in cats [38]. In addition to the NTS, the raphe nuclei may
be a candidate for being the site of action of narcotic anti-
tussives, since stimulation of the raphe nuclei depresses
the reflex activity caused by stimulation of the superior
laryngeal or vagal nerve in respiratory interneurons of the
NTS, without affecting respiratory rhythm [39]. This char-
acteristic seems to be in accordance with properties that
antitussives are presumed to have.

Peripheral opioid receptors and antitussive
effects

Mu-opioid receptors are located in both the central and
peripheral nervous systems. Adcock [40] has written a
nice review about the sensory opioid receptor and antitus-
sive activity of narcotic antitussives. Inhalations of neb-
ulized codeine, morphine and a peripherally acting
specific p-opioid receptor agonist produced antitussive
effects in guinea pigs [41,42]. Therefore, it is plausible that
inhaled opioid antitussives exert their effect by inhibiting
tachykinergic transmission of excitatory non-adrenergic
non-cholinergic (eNANC) nerves via a blockade of p-opi-
oid receptors in the airway, although it is unknown
whether opioids affect peripheral opioid receptors when
administered via conventional routes.

In addition to the effect on sensory fibers, opioid agonists
also appear to inhibit airway cholinergic transmission
[43-45]. Opioid-induced inhibition of the cholinergic
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bronchoconstriction induced by electric field stimulation
(EFS) in guinea-pig is caused partly by an inhibitory
action on the eNANC nerve, and partly by a direct effect
on cholinergic transmission [44]. The inhibitory effect of
p-opioid ligands on EFS-induced cholinergic contraction
of the airway's smooth muscle was also found in human
preparation. This effect is presumably caused by inhibit-
ing the acetylcholine release from the postganglionic par-
asympathetic nerve fibers [45]. Here, controversial
opinions exist as to whether the airway contraction
induces a cough response or not. However, it has been
known that coughing in patients with cough variant
asthma [46] is inhibited by bronchodilators such as
adrenergic 3, stimulants [47]. This fact seems to indicate
that the kind of cough such as that found in cough variant
asthma may be caused by smooth muscle contraction in
the airway.

Postganglionic parasympathetic nerve fibers in the airway
arise from the paratracheal ganglia (PTG). Their excitabil-
ity is controlled by the preganglionic neurons via central
vagal reflex. In addition, they can be modulated by a
peripheral reflex mechanism because the collateral
branches of neurokinin-containing C-fibers project to the
PTG neurons [48] and enhance cholinergic transmission
in the PTG, probably via neurokinin releases [49]. Further,
we have recently found that bradykinin inhibits the M-
type K+ current in the acutely dissociated PTG neurons of
rats, causing depolarization and action potential genera-
tion [50]. In addition, bradykinin potentiated nicotinic
ACh currents in PTG neurons [51]. Thus, the PTG are
thought to be not only a relay neuron of the parasympa-
thetic nerve, but also integrative sites for the neuromodu-
lation of normal airway function and important for
pathogenesis in airway inflammation. Interestingly, ophi-
opogonin-D, an active constituent of bakumondo-to, a
Chinese herbal medicine, hyperpolarized the membrane
potential via activation of the K+ current, reducing the cell
excitability of PTG neurons [52]. Bakumondo-to is found
to be effective for treating clinically chronic coughs
[53,54], and to inhibit codeine-registrant coughs as that
expressed in the experimental model described above
[55,56]. Therefore, we speculate that the excitability of
PTG neurons may contribute to pathological condition,
including some kinds of chronic cough. In this context,
we examined the effects of codeine in dissociated PTG
neurons. However, codeine did not induce any currents in
PTG neurons, and had no effect on high-voltage-activated
(HVA) Ca?*, bradykinin- induced or nicotine-induced
currents in the neurons. Bradykinin-induced potentiation
of nicotinic currents in the neurons was also not affected
by codeine (unpublished data).

To summarize this section, p-opioid receptors locate in

the airway vagal sensory neurons and, at least inhaled opi-
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oids, inhibit both eNANC nerve activity and cholinergic
contraction of smooth muscles through acting on p-opi-
oid receptors. The PTG neurons seem to be a possible tar-
get for peripherally acting antitussives. However, opioids
have no effect on the PTG neurons.

Codeine-sensitive and -resistant coughs

The larynx is the most sensitive site for elicitation of the
cough reflex by mechanical stimulation, followed by tra-
cheal bifurcation and the lower half of the trachea, in that
order [57]. We have recently found that coughs elicited by
mechanical stimulation of the tracheal bifurcation were
relatively resistant to suppression by codeine in guinea
pigs, whereas mechanically induced coughs in the trachea
close to the larynx were effectively inhibited by codeine
[58].

Sensory receptors in airway vagal afferents have been clas-
sified into 5 groups, which include rapidly adapting recep-
tors (RARs), Ad-nociceptors and bronchial C-fiber
receptors. These 3 receptors listed above appear to con-
tribute to cough responses. RARs are myelinated AS fibers
and have a low threshold for mechanical stimuli, but are
resistant to chemical stimuli. Conversely, Ad-nociceptors
and unmyelinated C-fiber receptors have a high threshold
for mechanical stimuli, but a low threshold for chemical
stimuli such as bradykinin and capsaicin. Recently, a 6th
receptor group called "cough receptor" has been identi-
fied [59]. Its properties are similar to those of RARs, but
they have a slower conduction velocity and did not
respond to stretching. In the larynx and upper trachea,
"cough receptors" appear to play a primary role in regula-
tion of the cough response [59]. Research by Widdicombe
[57] indicated that the larynx and the tracheal bifurcation
are abundantly innervated by RARs which presumably
include "cough receptors". Conversely, chemoreceptors
involved in cough responses are mainly distributed in the
lower trachea, particularly around the tracheal bifurca-
tion. Thus, differences in codeine resistivity between areas
of the lower airway may be due to differences in the distri-
bution of these various types of sensory fibers.

In guinea pigs, the effects of codeine on mechanically elic-
ited coughs at each lower airway site were strengthened by
repeated treatment with large doses of capsaicin [58]. This
capsaicin treatment caused degeneration and dysfunction
of the C- and A8-nociceptors [60-63] and consequently
reduced cough generation caused by citric acid and capsa-
icin, but not coughs caused by nicotine or mechanical
stimulation [64]. In addition, angiotensin-converting
enzyme inhibitors (ACEIs), which sensitize nociceptive
fibers, induced codeine-resistant chronic cough in con-
scious guinea pigs [65]. Consequently, it has been
hypothesized that coughs mediated by nociceptive fibers
were resistant to codeine. In our own study, capsaicin

http://www.coughjournal.com/content/3/1/8

administered topically to the tracheal bifurcation caused a
cough response that was resistant to codeine, whereas top-
ical application to the larynx side of the trachea did not
cause a cough response [66]. In a preliminary histochem-
ical study using guinea pigs, we found that substance P
(SP)-like immunoreactivity is lower in the larynx side of
the trachea than in the tracheal bifurcation. In addition,
the density of SP-immunoreactive nerves has been found
to be significantly higher in patients with cough-variant
asthma than in normal subjects and patients with classic
asthma [67]. The above findings support the hypothesis
that coughs mediated by nociceptive fibers may be resist-
ant to codeine treatment.

In a chronic bronchitis model of rats produced by SO, gas
exposure, SP content in the trachea was elevated [68].In a
similar model using guinea pigs, codeine did not inhibit
the cough responses elicited by mechanical stimulation of
the larynx side of the trachea or the tracheal bifurcation.
Epithelial shedding was not observed, but neutral
endopeptidase (NEP) levels and NEP activity in the tra-
chea and bronchus were significantly lower than those of
normal guinea pigs. NEP degrades a variety of peptides,
including bradykinin, SP and other tachykinins [69]. At
high doses, a NEP inhibitor elicits a cough response in
normal guinea pigs [70]. Based on findings that bradyki-
nin and tachykinins are potent inflammatory mediators,
and that neurokinins such as SP are released from C-fiber
(eNANC nerve) terminals, it has been suggested that
coughing induced by inflammatory peptides is resistant to
codeine. However, codeine has been found to signifi-
cantly suppress the cough response induced or enhanced
by NEP inhibitors [70]. In addition, opioids peripherally
inhibit tachykinergic transmission in the guinea pig bron-
chus [71-73]. Thus, it appears that NEP inhibition or tach-
ykinin release from peripheral C-fiber terminals is not
sufficient to explain mechanisms of induction of codeine-
resistant cough. However, in a preliminary study, we
found that inhaled neurokinin A caused codeine-resistant
cough in guinea pigs. Also, in that study, co-administra-
tion of codeine and an antagonist for the neurokinin 2
(NK,) receptor almost abolished citric acid-induced
coughing in conscious guinea pigs, in spite of the fact that
citric acid-induced coughs were hard to completely inhibit
even with high doses of codeine, when codeine alone was
given (Fig. 1).

In summary, evidence suggests that RAR or "cough recep-
tor"-mediated coughs are sensitive to codeine but coughs
triggered by neurokinin-containing nociceptive nerves are
resistant to it. In support of this suggestion, there is a find-
ing that the expression of transient receptor potential
vanilloid-1 (TRPV-1) is increased in the airway nerves of
patients with chronic cough [74]. In addition to TRPV-1,
it has recently been reported that acid sensing ion chan-
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Effect of co-administration of codeine and SR 48,968, a NK,
receptor antagonist, on citric acid-induced coughs in con-
scious guinea-pigs. Conscious guinea-pigs were put into
plethysmograph and 10 % citric acid was nebulized for 2 min
to elicit a cough response. Cough number was counted for
I5 min during and after citric acid stimulation. After more
than 4 h, codeine was orally administered at various doses 30
min before the 2nd stimulation. Then, SR 48,968 (1 mg/kg) or
vehicle was intravenously administered 5 min before the 2nd
stimulation. Results were normalized to the pre-administra-
tion cough number. Continuous lines indicate the theoretical
fitting of the data with single exponential function. Note that
co-administration of codeine (10 mg/kg) and SR 48,968 inhib-
ited cough response almost completely, while the antitussive
effect induced by codeine alone reached a plateau at 20 mg/
kg (33 % of pre-administration value). Antitussive effects pro-
duced by co-administration of codeine (10 mg/kg) and SR
48,968 was significantly more potent than that produced by
codeine (10 mg/kg) alone (p < 0.05, n = 4 and 6, respec-
tively). SR 48,968 itself inhibited cough response to about 70
% of the time, but the inhibitory effect was not significantly
different from the vehicle group. Co-administration of
codeine and SR 48,968 had no effect on mechanically-induced
sneezing (data not shown). Each value shows mean = S.E.M.
(n =3 to 7). * p < 0.05, significantly different from the vehicle
control.

nels (ASICs) were localized in Ad-fibers of guinea pigs
[75]. Therefore, differences in codeine sensitivity to acid-
induced coughs may depend on the pH level at the
chough induction site. Further studies are needed to deter-
mine a final conclusion.

Codeine resistant coughs and opioid receptors

As described in the above session, evidence suggests that
tachykinin-containing vagal afferent fibers contribute to
codeine-resistant cough. Such fibers rise from the airway
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and input the NTS [30,31]. Codeine-resistant coughs are
caused by various conditions such as cigarette smoking,
infection and inflammation of the airway. Exposure to
cigarette smoke augmented the C-fiber input to the NTS
[76]. Injection of a NK; receptor antagonist into the NTS
had an antitussive effect in animals exposed to cigarette
smoke, but not to filtered air [77]. An excitatory action of
iontophoretically applied SP on NTS neurons was not
inhibited by p-agonists [78]. These findings seem to sug-
gest that p-opioid receptors were not expressed in the C
fiber such as tachykinin-containing fibers involved in the
production of codeine-resistant cough. Furthermore, it
has been reported that infection and inflammation of the
airway led to the production of neurokinins in nonnocic-
eptive RAR nerve terminals and in their cell bodies in
vagal sensory ganglia [79-83]. Sensory neuropeptide
release from peripheral and central endings of nonnocic-
eptive afferent nerve seems not to require noxious or noci-
ceptive stimuli but may occur as a result of stimulation of
low-threshold mechanosensors [81]. Certainly, codeine
only weakly inhibited coughs in animal models of allergic
responses [84-86], as well as of chronic bronchitis pro-
duced by SO, gas exposure [68]. Therefore, under patho-
logical conditions described above in the airway, changes
in phenotype of the vagal nerves and tachykinin release
from RAR fibers might facilitate glutamatergic transmis-
sion in the nucleus involved in cough reflex, leading to
codeine-resistant cough.

As described previously, p-opioid receptors are the pre-
dominant type of opioid receptor in the NTS [87,88].
They exist in both postsynaptic and presynaptic sites in
the NTS [38,89]. The p-agonist activated the GIRK chan-
nel current and hyperpolarized the postsynaptic mem-
brane potential in about 60 % of NTS neurons. At the
same time, p-agonists inhibited HVA Ca2+ currents in the
nodose ganglia [90], and also the glutamatergic EPSCs in
almost all NTS neurons via a presynaptic mechanism,
which is much more sensitive to p-agonist than postsyn-
aptic mechanisms [37,38]. Here, the nodose ganglion is
the origin of RAR [91], and glutamate is the principal neu-
rotransmitter in the Ad-fibers [92-94]. Excision of the
nodose ganglion causes marked depletion of p-opioid
receptors in the dorsal and medial regions of the ipsilat-
eral caudal NTS [34]. Electron microscopy has shown that
p-opioid receptors localize in the plasma membrane of
the terminals of vagal afferents derived from nodose gan-
glia [95], but not in nociceptive fibers [96]. Considering
these findings comprehensively, it seems possible that p-
receptors in the NTS may not express and/or may not
function in neural networks for cough production, under
pathological conditions such as infection and inflamma-
tion of the airway, although the receptors are involved in
codeine-sensitive coughs under healthy conditions with-
out infection and inflammation of the airway.
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In opposition to the idea about the relation between neu-
rokinins and codeine-resistant cough, there is an argu-
ment based in the fact that neurokinin-containing airway
fibers are very few in humans. However, neurokinin-con-
taining vagal airway afferent neurons are only 3% of total
neurons, even in guinea-pigs [80]. Comparative study also
indicated that the location of SP-immunoreactive fibers in
the airway was similar between humans and guinea pigs,
although SP-reactive nerves in the smooth muscle layer of
the trachea and bronchi were less abundant in rat and cat
than in guinea-pig [97]. In addition, as in the cases of ani-
mal models, the density of SP-immunoreactive nerves was
significantly higher in patients with cough-variant asthma
than in normal subjects and patients with classic asthma
[67]. Increase in neurokinin content has also been
observed in patients with perennial allergic rhinitis [98].
Therefore, it is reasonable to speculate that neurokinin-
containing airway afferent nerves play pathophysiological
roles in the generation of inflammatory and allergic air-
way diseases including production of codeine-resistant
chronic coughs in humans.

Conclusion

Based on the above findings, we have developed the fol-
lowing hypothesis. Coughs mediated by mechanical stim-
ulation of RARs or "cough receptors" are attenuated by
narcotic antitussives primarily at the NTS level via inhibi-
tion of glutamatergic transmission. Presynaptic p-opioid
receptors probably contribute to this inhibition. Con-
versely, neurokinin release in the NTS from nociceptive C-
and Ad-fibers, and also from RAR fibers under airway
inflammation, causes coughs resistant to antitussives
including opiates. Recent findings by Mazzone et al. [99]
support this hypothesis. The available evidence suggests
that activation of p-opioid and inhibition of neurokinin
receptors can help in the suppression of some varieties of
chronic cough. In a preliminary study, we found that
coadministration of codeine and a NK, tachykinin recep-
tor antagonist abolished citric acid-induced coughs in
guinea pigs, although codeine alone did not abolish the
cough even when administered at very high doses. Further
studies are needed to clarify the pharmacology and mech-
anisms of antitussive effects of opiates, and to elucidate
mechanisms of opiate-resistant coughs. Furthermore, it is
very important to characterize opiate-resistant coughs in
experimental animals, and to determine the extent to
which such experimentally induced coughs correspond to
the various types of cough in humans.
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